Созданы синтетические антитела для укрепления иммунитета
Исследователи из Массачусетского технологического института (MIT) и университета Ханьяна (Hanyang University) создали «синтетические антитела». В качестве основы химики использовали углеродные нанотрубки, которые флуоресцируют под действием лазерного излучения.
Для решения этой проблемы химики MIT заменили антитела на специально синтезированные амфифильные полимеры. Эти макромолекулы содержат участки, которые взаимодействуют с водой (гидрофильные) или отталкивают её (гидрофобные).
На рисунке изображён молекулярный датчик на основе углеродной нанотрубки и амфифильного полимера для определения рибофлавина (витаин В2), созданный инженерами-химиками MIT (иллюстрация Strano research group/Chemical Engineering, MIT).
Полимеры синтезированы таким образом, что их гидрофобные участки прочно закрепляются на поверхности нанотубок, как якоря, а гидрофильные представляют собой «петли», которые образуют своеобразную корону вокруг частицы. Петли расположены строго вдоль трубки, а расстояние между якорями определяет, какая именно молекула-мишень сможет вклиниться в петли и изменить флуоресценцию нанотрубки.
Уникальность нового подхода состоит в том, что до того как полимер будет закреплён на нанотрубке невозможно предугадать, возможность молекулярного распознавания, глядя на структуру мишени и полимера. То есть сам по себе полимер не может избирательно распознавать ту или иную молекулу.
«Новая техника даёт нам беспрецедентную возможность распознавать любую молекулу-мишень, подбирая соответствующие комплексы нанотрубок и полимеров, создавая, по сути, синтетические аналоги антител живого организма», — поясняет ведущий автор исследования Майкл Страно (Michael Strano) в пресс-релизе MIT.
Один из участников исследования Маркита Лэндри (Markita Landry) измеряет флуоресценцию углеродных нанотрубок (фото Thomas Martin/ Techniche Universitat Munich).
В своей статье, вышедшей в журнале Nature Nanotechnology, исследователи публикуют описание молекулярных датчиков, специфичных по отношению к рибофлавину (витамин B2), эстрадиолу (женский половой гормон) и L-тироксину (гормон щитовидной железы).
В настоящее время учёные ведут активные разработки по определению нейротрансмиттеров, углеводов и белков. Ещё одной важной задачей для команды исследователей является понимание того, что именно происходит с полимером и всей наночастицей в целом при захвате определённой молекулы-мишени.
Исследователи полагают, что их настоящие и будущие разработки в области молекулярного распознавания откроют огромные возможности для мониторинга таких заболеваний как рак, различные воспалениея, диабет и многих других в любом живом организме.